Probability and complex function: Unit III: Analytic functions

Exercise 3.3 (Construction of Analytic functions)

Problems with Answer

Probability and complex function: Unit III: Analytic functions : Exercise 3.3

EXERCISE

Construction of an analytic function

 

1. Show that the function u (x, y) = 3x2y + 2x3 – y3 – 2y2 is harmonic function. Find the conjugate and analytic function of v and express u + iv is an analytic functin of z. 

[Ans. v (x, y) = 3x2y + 4xy - x3 + C, f(z)= -iz3 +2z2 + iC where C is a real constant ]

 

2. Prove that the function v = sin x coshy + 2 cos x sinh y + x2 - y2 + 4xy satisfies Laplace's equation. Determine the corresponding analytic function. 

[Ans. f (z) = (2 + i) (z2 + sin z) + C]

 

3. If f (z) = u + iv is an analytic function of z, and if u = 2 sin 2x / e2y + e-2y - 2 cos 2x find c. 

[Ans. v = -2 sinh 2y / e2y + e-2y - 2 cos 2x + C]

 

4. Find v such that wu+iv is an analytic function of z, given that u =  cos 2 xy. Hence find w.


 

5. Find the analytic function w = u + iv if v = e2x (x cos 2y - y sin 2y). Hence find u. [A.U A/M 2015 R13] 

[Ans. w = ize2z + C , u = - (x sin 2y + y cos 2y) e2x + C]

 

6. Find a harmonic conjugate of u = x4 - 6x2 y2 + y

[Ans. v = 4yx3 - 4xy3 + C]

 

7. find u = x – y /x2 + y2 such that u + iv is an analytic function. What is the harmonic conjugate of v? 


 

8. Find the analytic function whose real part is sin 2x /cosh 2y + cos 2x

 [Ans. f (z) = tan z + C] [A.U N/D 2019 (R17)]

 

9. Find the analytic function whose imaginary part is -e-2xy cos (x2 - y2)


 

10. Prove that u = 2x - x3 + 3xy2 is harmonic and find its harmonic conjugate. Also find the corresponding analytic function.  

[Ans. v = 2y - 3x2y + y3 + C, f(z) = 2z -z3 + ic]

 

11. Show that u (x, y) = sin x cosh y + 2 cos x sinh y + x2 - y2 + 4xy is harmonic. Find an analytic function f (z) interms of z with the given u for its real part.  

[Ans. f (z) = sinz + z2 - 2i sinz - 2iz2 + C]

 

12. Given v (x, y) =x4 - 6x2 y2 + y4, find f (z) = u(x, y) + iv (x, y). Show that f(z) is analytic. 

[Ans. f (z) = iz4 + C]

 

13. If u + v = (x − y) (x2 + 4xy + y2) and f (z) = u + iv find the analytic function f (z) interms of z. 

[Ans. z3 + C]

 

14. Find the real part of the analytic function whose imaginary part is e-x [xy cos y + (y2 - x2) sin y]. Construct the analytic function. 

[Ans. u = e-x[(x2 - y2) cos y + 2xy sin y  f(z)=  z2e-z + C ]


15. If u (x, y) is a harmonic function in a region D, prove that f(z) = ∂u/∂x - ∂u/∂y is analytic in D.

 

16. Show that the following functions are harmonic and find a corresponding analytic function f (z) = u + iv. Also find its harmonic conjugate.

(i) u = ex cos y. [Ans. f(z) = ez + C, v = ex sin y]

(ii) u = x / x2 + y2  [Ans. f (z) == 1/z + C, v = -y/x2 + y2 + C]

 (iii) v = -sin x sinh y [Ans. f (z) = cos z + C, u = cos x cosh y + C]

 

17. represents the complex potential for an electric field and ψ = 3x2y - y3, find the potential function .

[Ans.  =x3 - 3x2 + c]

 

18. An incompressible fluid flowing over the xy plane has the velocity potential

 = x2 - y2 + x /x2 + y2

Examine if this is possible and find a stream function ψ

[Ans. ψ = 2xy – y/x2 + y2 +C]

 

19. Determine the analytic function f(z) = u + iv if u – v = cos x + sin x – e-y/2 (cosx- coshy) given that f(π/2) = 0 

[Ans. f (z) = ½ [ 1- cot(z/2)]]

 

20. Find the analytic function f (z) = u + iv given that that 2u + v = e2x [(2x + y) cos 2y + (x - 2y) sin 2y] 

[Ans. f (z) = ze2z + C]

 

21. Prove that u = x2 – y2 , v = -y/x2 + y2 bth satisfy the Laplace equation but u + iv is not analytic. [A.U N/D 2015 R-13]

 

22. Is there an analytic function f (z) = u + iv for which v = ey/x ? [Ans. v cannot be the imaginary part of an analytic function.]

 

23. Prove that u = x2 - y2 and v = -y/x2 + y2 are harmonic functions but not harmonic conjugates.[A.U. N/D 2014]

 

24. Find the analytic function z = u + iv, if u – v = x – y/ x2 + 4xy + y2 [A.U. A/M 2019 R-08]

 

Probability and complex function: Unit III: Analytic functions : Tag: : Problems with Answer - Exercise 3.3 (Construction of Analytic functions)