Probability and complex function: Unit III: Analytic functions : Problems based on fixed points or invariant points
PROBLEMS BASED ON FIXED POINTS OR INVARIANT
POINTS
Example 3.5.1. Find the
fixed points of w = 2zi+ 5 / z-4i
Solution:
The fixed points are given by
z
= 2zi + 5/z-4i- [Replace w by z]
z2
- 4zi = 2zi + 5 ; z2 - 6iz - 5 = 0
z
= 6i ± √-36 + 20 /2 z = 5i, i
Example 3.5.2 Find the
invariant points of the bilinear transformation z – 1/z + 1 [A.U A/M 2015 R13]
[A.U A/M 2019 R08]
Solution:
The invariant (fixed) points are given by
z
= z – 1/z + 1
z2
+ z = z −1
z2
= -1
z
= ± √ -1 = i, - i
Example 3.5.3 Find the
invariant point of the bilinear transformation w = 1 + z / 1-z [A.U. N/D 2007, N/D 2011]
Solution:
The invariant points are given by [Put w = z]
z
= 1+ z / 1 - z
z
- z2 = 1 + z
z2
= -1
z
= ± i
Example 3.5.4. Obtain
the invariant points of the transformation w = 2 – 2/z’[Anna, May 1996]
Solution: The
invariant points are given by
z
= 2 – 2/ z; z = 2z – 2 / z
z2
= 2z – 2 ; z2 - 2z + 2 = 0 ;
z
= 2 ± √4 – 8/2 = 2 ± √-4 /2 = 2 ± 2i /2 = 1 ± i
Example 3.5.5.
Find the fixed points of (a) w = 3z – 4/z – 1, (b) = 1/z [A.U. M/J 2006] [A.U N/D 2019 R-17, A.U A/M 2019 R-17]
Solution
:
Example 3.5.6.Find the
fixed point of the transformation w = 6z – 9/z [A.U. N/D 2005] [A.U M/J 2013
R-08]
Solution:
The fixed points are given by replacing w = z
i.e.,
6z – 9/z ⇒
z = 6z – 9/z
z2
= 6z - 9
z2
- 6z +9 = 0
(z
- 3)2 = 0
z
= 3, 3
The
fixed points are 3, 3
Example 3.5.7 Find the
invariant points of the transformation w = 2z + 6 /z + 7 [A.U M/J 2009]
Solution:
The invariant (fixed) points are given by
z
= 2z + 6/z + 7
z2
+ 7z = 2z + 6
z2
+ 5z - 6=0
Example 3.5.8.Find the
invariant points of ƒ (z) = z2. [A.U M/J 2014 R-13]
Solution:
The invariant points are given by z = w =
f (z)
(i.e.,) z = z2
⇒ z2 - 2 = 0
⇒ z (z − 1) = 0
⇒ z = 0 , z = 1
Example 3.5.9. Find the
fixed points under the transformation w = 2z – 5/z + 4’ [A.U. P.T. A/M 2003]
[A.U April 2016 R-15 U.D]
Solution:
The fixed points are given by
z
= 2z -5/2 + 4
z2
+ 4z = 2z – 5
z2
+ 2z + 5 = 0
z
= -2 ± √4 – 20/2 = -2 ± 4i/2 = -1 ± 2i
z
= -1 + 2i , -1 - 2i
Example 4.5.10. Find
the invariant points of a function f (z) = z3 + 7z/7 - 6zi
[A.U D15/J16 R-13]
Solution : Given:
w = f (z) = z3 + 7z/7 - 6zi
The
invariant points are given by
z
= z3 + 7z /7 - 6zi ⇒
1 = z2 + 7/7 - 6zi
7
- 6zi = z2 + 7
-6zi
= z2 ⇒ z2 + 6zi = 0
⇒ z (z + 6i) = 0
z
= 0, z= -6i
Probability and complex function: Unit III: Analytic functions : Tag: : Analytic functions - Problems based on fixed points or invariant points
Probability and complex function
MA3303 3rd Semester EEE Dept | 2021 Regulation | 3rd Semester EEE Dept 2021 Regulation