Probability and complex function: Unit V: Differential equations : problems based on P.I = 1 / f(D) sin ax or 1 / f(D) cos ax ⇒ Replace D2 by -a2 : Example
I. (c) problems based on P.I = 1 / f(D) sin ax or 1 / f(D) cos
ax
⇒ Replace D2 by -a2
Example
5.1.20. Find the P.f. of (D2 + 4) y = cos 2x
[AU,
May 2001]
Solution:
Given: (D2 + 4) y = cos 2x
Example
5.1.21. Find the P.I. of (D2 + 1) y = sin x
Solution:
Given: (D2 + 1)y = sin x
Example
5.1.22. Find the particular integral of (D2 + 1) y = sin x sin 2x
Solution:
Given: (D2 + 1) y = sin 2x sin x
Example
5.1.23. Find the P.I. of d3y / dx3 + 4 dy/dx = sin 2x
Solution:
Given: d3y / dx3 + 4 dy/dx = sin 2x
i.e.,
[D3 + 4D]y = sin 2x
Example
5.1.24. Solve d2y / dx2 + 3 dy/dx + 2y = sin 3x.
Solution
:
Example
5.1.25. Find the P.I. of (D3 + 1) y = cos (2x − 1)
Solution
:
Example
5.1.26. Solve (D2 + a2)2 y = sin ax
Solution:
Given: (D2+ a2) 2y= sin ax
The
auxiliary equation is (m2 + a2)2 = 0
Probability and complex function: Unit V: Ordinary Differential Equations : Tag: : Solved Example Problems | Ordinary Differential Equations - (c) Problems based on P.I = 1 / f(D) sin ax or 1 / f(D) cos ax ⇒ Replace D2 by -a2
Probability and complex function
MA3303 3rd Semester EEE Dept | 2021 Regulation | 3rd Semester EEE Dept 2021 Regulation