Probability and complex function: Unit V: Ordinary Differential Equations

Problems based on method of variation of parameters

Solved Example Problems | Ordinary Differential Equations

Probability and complex function: Unit V: Differential equations : Problems based on method of variation of parameters

II. Problems based on method of variation of parameters

 

Example 5.2.1. Solve (D2 + a2) y=  tan ax by the method of variation of parameters.  [A.U. M/J 2005, A/M 2008, N/D 2007] [A.U M/J 2009, M/J 2013]  [A.U N/D 2014] [A.U N/D 2016 R-15, A/M 2017 R-8] [A.U A/M 2019 R-17]

Solution: Given: (D2 + a2) y = tan ax

The auxiliary equation is m2 + a2 = 0

m = ±ai

C.F = e0x [C1 cos ax + C2 sin ax]

C.F = C1 cos ax + C2 sin ax


= a cos2 ax + a sin2 ax

= a[cos2 ax + sin2 ax]

P.I = P f1  + Q f2


= -1/a2 [ cos ax lg ( sec ax + tan ax) ]

Y = C.F + P.I

y = C1 cos ax + C2 sin ax – 1/a2 cos ax log [sec ax + tan ax]

 

Example 5.2.2 Solve (D2+ a2) y = a2 tan ax by the method of variation of paramters.

Solution : Hint: In the Example 5.2.1

X = a2 tan ax, we get

P = sin ax - log (sec ax + tan ax), Q = - cos ax

P.I = Pf1 + Qf2

Y = C.F + P.I

y = C1 cos ax + C2 sin ax - cos ax log [sec ax + tan ax]

 

Example 5.2.3. Solve d2y /dx2 + 4y = 4 tan 2x using method of variation of parameters.  [A.U N/D 2014 R-13, D2015/Jan.2016]

Solution: Hint: In the Example 5.2.2 put a = 2, we get

y = (C1 cos 2x + C2 sin 2x) - cos 2x log (sec 2x + tan 2x)

 

Example 5.2.4. Solve: d2y/dx2 + y = tan x by the method of variation of parameters.[A.U N/D 2003] [A.U M/J 2016 R-13]

Solution: Hint: In the Example 5.2.1 put a = 1, we get

y  = C1 cosx + C2 sinx – cos x log (sec x + tanx)

 

Example 5.2.5. Solve (D2+ a2) y = sec ax using the method of variation of parameters. [A.U. M/J 2012]

Solution: Given: (D2 + a2) y = sec ax

The auxiliary equation is m2 + a2 = 0

m2 = -a2

m = ± ai

C.F = C1 cos ax + C2 sin ax


P.I= Pf1 + Qf2

= 1/a2log [cos ax] cos ax + x/a sin ax

 

Example 5.2.6. Use the method of variation of parameters to solve (D2 + 1) y = sec x. [AU, Dec. 1999, A.U. A/M 2004, A.U(Trichy) J/J 2008] [A.U D15/J16 R-13] [A.U N/D 2016 R-13]

Solution: Hint: In the Example 5.2.5 put a = 1, we get

y = C1 cosx + C2 sinx + cos x log (cosx) + x sinx.

 

Example 5.2.7. Solve (D2 + 4) y = sec 2 x by the method of variation of parameters. [AU, March 1996, AU Model, A.U. N/D 2002, CEG Nov. 2002] [A.U N/D 2010 R-8]

Solution: Hint: In the Example 5.2.5 put a = 2, we get

y = C1 cos 2x + C2 sin 2x + ¼ log [ cos 2x cos 2x + ½ x sin 2x

 

Example 5.2.8. Solve d2y/dx2 + y = cosec x by using method of variation of parameters. [A.U N/D 2012] [A.U A/M 2011 R-8]  [A.U. N/D 2019, R-17]

Solution: Given: d2y/dx2 + y = cosec x

i.e., (D2 + 1) y = cosec x

The auxiliary equation is m2 + 1 = 0

m = ± i

C.F. = C1 cos x + C2 sin x

Here,


P.I = P f1 + Q f2

= -x cos x + log (sin x) sin x

y= C.F + P.I

 C1 cos x + C2 sin x = - x cos x + sin x log (sin x)

 

Example 5.2.9 Solve (D2+ a2) y = cosec ax by the method of variation of parameters.

Solution: Hint: f1f2' -f1'f2  = a

P = -x/a Q = 1/a2 log ( sin ax)

y = C1 cos ax + C2 sin ax – x/a cos ax + 1/a2 sin ax log (sin ax)

 

Example 5.2.10. Apply the method of variation of parameters to solve (D2 + 4) y = cot 2 x [A.U N/D 2009, N/D 2011] [A.U N/D 2015 R-13]

Solution: Given: (D2 + 4) y = cot 2x

The auxiliary equation is m2 + 4 = 0 ; m = ± 2i

C.F = e0x [C1 cos 2x + C2 sin 2x]

C.F = C1 cos 2x + C2 sin 2x

Here ,


y = C.F + P.I.

= C1 cos 2x + C2 sin 2x + ¼  [log (cosec 2x - cot 2x)] sin 2x

 

5.2.11 Solve (D2 + a2) y = cot ax by the method of variation of parameters.

Solution: Hint: f1f2' -f1' f2 = a


 

Example 5.2.12. Solve d2y/dx2 + y = cosec x cot x using the methd of variation of parameters. [A.U. N/D 2007] [A.U A/M 2015 R8]

Solution: Given: d2y/dx2 + y = cosec x cot x

i.e., (D2 + 1) y = cosec x cotx

The auxiliary equation is m2 + 1 = 0

m = ±i

C. F = C1 cos x + C2 sin x


y = C1 cosx + C2 sinx – cosx log (sin x) – [cotx +x]sin x

 

Example 5.2.13. Solve by the method of variation of parameters d2y/dx2 + y = x sin x [A.U Nov. 2001, A.U Model Qn.] [A.U M/J 2010 R-8]

Solution: Given: d2y/dx2 + y = x sin x

ie., (D2+1) y = x sinx

The auxiliary equation is m2 + 1 = 0

m = ±i

C. F. = C1 cos x + C2 sin x

= C1f1+ C2f2

Here,


y = A cos x + B sin x – x2/4 cos x + x/4 sin x , where A = C1 + 1/8, B = C2

Note: See also page no. 5.35 and 5.36

 

Example 5.2.14. Solve by method of variation of parameters y''= 4/x y' +4/x2y = x+ 1 [A.U. A/M 2008]

Solution: Given: y''= 4/x y' +4/x2y = x+ 1

i.e., x2y'' - 4xy' + 4y = x4 + x2

i.e., [x2 D2 - 4xD + 4]y = x4 + x2..........(1)

Put x = ez

log x = log ez

= z

So that, xD = D'

x2D2 = D' (D' - 1)


The auxiliary equation is m2 - 5m + 4 = 0

(m-4) (m-1) = 0

m = 4, m = 1

C.F = C1e4z + C2 ez

Here


y = C1x4 + C2x+ x4/3 log x – x4/9 – x2/2+

 

Example 5.2.15. Solve (D2 - 4D + 4) y = (x + 1) e2x by the method of variation of parameters. [A.U N/D 2018 R-17]

Solution: Given: (D2 - 4D + 4) y = e2x

The auxiliary equation is m2 - 4m + 4 = 0

(m-2)2 = 0; m = 2,2

C.F = (Ax + B)e2x  = Axe2x + Be2x

Here


y = C.F + P.I.

y = (Ax + B) e2x + 1/6 x3 e2x + ½ x2 e2x

 

Example 5.2.16 Using the method of variation of parameters, solve  d2y/dx2 – 6 dy/dx + 9y= e3x /x2

Solution: Given: d2y/dx2 – 6 dy/dx + 9y= e3x /x2

i.e., D2y - 6Dy + 9y = e3x/x2

[D2 - 6D + 9] y = e3x /x2

The auxiliary equation is m2 - 6m +9 = 0

 (m − 3)2 = 0; m = 3, 3

C.F = (C1+ C2x) e3x

Here,


 

Example 5.2.17. Solve (D2 + 2D + 5) y = e-x tan x.

Solution: Given: (D2 + 2D + 5) y =  e-x tan x

The auxiliary equation is m2 + 2m + 5 = 0

M = -2 ± √4 – 20 /2 = -1±  12i

C.F= e-x [C1 cos 2x + C2 sin 2x]

= C1e-x cos 2x + C2 e-x sin 2x

= C1f1 + C2f2

Here



Example 5.2.18 Solve (D2 - D) y = ex cos x using method of variation of parameters. [A.U N/D 2016 R-8]

Solution : The auxiliary equation is m2 - m = 0

m (m − 1) = 0

m = 0, m = 1

C.F = C1e0x + C2 ex

= C1 + C2ex


P.I = -ex/2 [cos x + sin x ] + sin x ex

y = C.F + P.I

y = C1 + C2 ex -ex/2 [cos x + sin x ] + sin x ex


Probability and complex function: Unit V: Ordinary Differential Equations : Tag: : Solved Example Problems | Ordinary Differential Equations - Problems based on method of variation of parameters


Related Topics



Related Subjects


Probability and complex function

MA3303 3rd Semester EEE Dept | 2021 Regulation | 3rd Semester EEE Dept 2021 Regulation