Probability and complex function: Unit V: Differential equations : Exercise 5.3. (a)
EXERCISE
5.3. (a)
Solve
the following differential equations :
1.
(x2D2+xD-1) y = 0 where D = d/dx [A.U. May, 2001]
2.
(x2 D2 - 3xD + 4) y = x2 cos (log x) [A.U N/D
2010]
[Ans. y = x2 + (A + B log x)
– x2 cos (log x ))
3.
(x3 D3 + 2x2 D2 - xD + 1)y = log x
[
Ans. y = x2 (A + B log x)
- x2 cos (log x)]
4. (x2 D2 + xD -9) y = 5/x2
[Ans.
y = Ax3 + B/x3 – 1/x2 ]
5.
(x2D2 + 4xD +2) y = x2 + 1 / x2
[Ans.
y = A / x + B/x2 + x2 /12 – 1/x2 log]
[A.U A/M 2008] [A.U. M/J 2013]
6.
(x2 D2 + xD + 1) y = sin (2 logx) sin (logx)
[A.U
A/M 2005, A.U Tvli N/D 2009]
[Ans. y = A cos (log x) +B sin(log x) – 1/16
sin (3log x) – 1/4 logx cos (logx)]
7.
(x2 D2 - 2xD - 4) y = 32 (log x2.
[Ans. y = Ax4 + B/x – [8 (log x)2
– 12(log x) + 13]]
8.
(x2 D2 - xD + 4) y = x2 sin (logx)
[Ans.
y = x[Acos(√3 logx) + Bsin(√3 log x)] – 1/13 x2[2 cos (logx) - 3 sin
(log. x)]
9.
(x2 D2 + 4xD + 2) y = sinx
[Ans
. y = A/x + B/x2 – 1/x2 sin x]
10.
(x2 D2 + 2xD - 20) y = (x + 1)2.
11.
(x2 D2 - 4x D + 6) y = 42 / x
[Ans.
y = C1x2 + C2x3 + 1/x4 ]
12.
(x2 D2 + 1) y = 3x2
13.
x2y" - xy' + y = x
Ans.
y = (C1 + C2 logx) x + x / 2 (logx)
2
14.
x2y" - 3xy' + 4y = x2, y (1) = 1, y ' (1) = 0
Ans.
y = x2 [1 - 2 logx + 1/2
(logx) 2]
15.
x2y'' - xy' - 3y = x2 logx
16.
x2y" + xy' + y = 4 sin (log x)
Ans.
y = C1 cos (log x) + C2
sin (logx) - 2 log x cos (log x)
17.
x2y'' + 3xy' + 5y = x cos (logx) + 3
Ans.
y = 1/x [C1 cos (2 logx) + C2 sin (2 log x)]
+
x/65 [4 sin (logx) + 7 cos (logx)] + 3/5
18.
x2y" - 3xy' - 5y = cos (logx) UA]
Ans.
y = Ax ̄1 + B-112 sin (logx) + 3 cos (log x)]
19.
x2y" + 3y' + y = sin (log x) / x2
Ans.
y = 1/x (A log x + B) + 1/2x2 cos (log x)
20.
x2y'' + xy' - 9y = x2 log x
Ans.
y = Ax3 + B / x3 - x2 / 25 [5 logx +4]
21.
x3y'" + 3x2y" + xy' + y = x + log x
[A.U
A/M 2015 R8]
22.
x2y'' - 3xy' + 5y = x2 sin (log x)
[A.U A/M 2017 R8]
23.
x2y" + xy' + y = sin (log x2)
Ans.
y = e2z C1 cos z + C2 sin z - sin 2z/3, where
z = logx
24.
x3y'' + 5x2y' + 4xy = logx
Ans.
y = (C1 logx + C2)1/x2
+ (logx - 2)
25.
(x2 D2 + xD + 4) y = cos (logx) +x sin (log x)
Ans.
y = (C1 cos 2z + C2 sin 22) + 1/3 cos z – ez /
10 (cos z - 2 sin z), where z = log x
26.
x4y'"' + 2x3 y" - x2y' + xy=1
Ans.
y = (C1z + C2) ez
+ C3e-z + e-z / 4, where z = logx
Probability and complex function: Unit V: Ordinary Differential Equations : Tag: : Problems with Answer | Ordinary Differential Equations - Exercise 5.3. (a) cauchy-euler
Probability and complex function
MA3303 3rd Semester EEE Dept | 2021 Regulation | 3rd Semester EEE Dept 2021 Regulation