Probability and complex function: Unit V: Ordinary Differential Equations

Exercise 5.3. (a) cauchy-euler

Problems with Answer | Ordinary Differential Equations

Probability and complex function: Unit V: Differential equations : Exercise 5.3. (a)

EXERCISE 5.3. (a)

Solve the following differential equations :

1. (x2D2+xD-1) y = 0 where D = d/dx  [A.U. May, 2001]

 

2. (x2 D2 - 3xD + 4) y = x2 cos (log x) [A.U N/D 2010]

[Ans. y = x2 + (A + B log x) – x2 cos (log x ))

 

3. (x3 D3 + 2x2 D2 - xD + 1)y = log x

[ Ans. y = x2 (A + B log x) - x2 cos (log x)]

 

4. (x2 D2 + xD -9) y = 5/x2  

[Ans. y = Ax3 + B/x3 – 1/x2 ]


5. (x2D2 + 4xD +2) y = x2 + 1 / x2

[Ans. y = A / x + B/x2 + x2 /12 – 1/x2 log]

 [A.U A/M 2008] [A.U. M/J 2013]

 

6. (x2 D2 + xD + 1) y = sin (2 logx) sin (logx)

[A.U A/M 2005, A.U Tvli N/D 2009]

 [Ans. y = A cos (log x) +B sin(log x) – 1/16 sin (3log x) – 1/4 logx cos (logx)]

 

7. (x2 D2 - 2xD - 4) y = 32 (log x2.

 [Ans. y = Ax4 + B/x – [8 (log x)2 – 12(log x) + 13]]

 

8. (x2 D2 - xD + 4) y = x2 sin (logx)

[Ans. y = x[Acos(√3 logx) + Bsin(√3 log x)] – 1/13 x2[2 cos (logx) - 3 sin (log. x)]

 

9. (x2 D2 + 4xD + 2) y = sinx

[Ans . y = A/x + B/x2 – 1/x2 sin x]

 

10. (x2 D2 + 2xD - 20) y = (x + 1)2.


 

11. (x2 D2 - 4x D + 6) y = 42 / x

[Ans. y = C1x2 + C2x3 + 1/x4 ]

 

12. (x2 D2 + 1) y = 3x2


 

13. x2y" - xy' + y = x

Ans. y = (C1 + C2 logx) x + x / 2 (logx) 2

 

14. x2y" - 3xy' + 4y = x2, y (1) = 1, y ' (1) = 0

Ans. y = x2 [1 - 2 logx + 1/2 (logx) 2]

 

15. x2y'' - xy' - 3y = x2 logx


 

16. x2y" + xy' + y = 4 sin (log x)

Ans. y = C1 cos (log x) + C2 sin (logx) - 2 log x cos (log x)

 

17. x2y'' + 3xy' + 5y = x cos (logx) + 3

Ans. y = 1/x [C1 cos (2 logx) + C2 sin (2 log x)]

+ x/65 [4 sin (logx) + 7 cos (logx)] + 3/5

 

18. x2y" - 3xy' - 5y = cos (logx) UA]

Ans. y = Ax ̄1 + B-112 sin (logx) + 3 cos (log x)]

 

19. x2y" + 3y' + y = sin (log x) / x2

Ans. y = 1/x (A log x + B) + 1/2x2 cos (log x)

 

20. x2y'' + xy' - 9y = x2 log x

Ans. y = Ax3 + B / x3 -  x2 / 25 [5 logx +4]

 

21. x3y'" + 3x2y" + xy' + y = x + log x

[A.U A/M 2015 R8]


 

22. x2y'' - 3xy' + 5y = x2 sin (log x)

 [A.U A/M 2017 R8]


 

23. x2y" + xy' + y = sin (log x2)

Ans. y = e2z C1 cos z + C2 sin z - sin 2z/3, where z = logx

 

24. x3y'' + 5x2y' + 4xy = logx

Ans. y = (C1 logx + C2)1/x2 + (logx - 2)

 

25. (x2 D2 + xD + 4) y = cos (logx) +x sin (log x)

Ans. y = (C1 cos 2z + C2 sin 22) + 1/3 cos z – ez / 10  (cos z - 2 sin z), where z = log x

 

26. x4y'"' + 2x3 y" - x2y' + xy=1

Ans. y = (C1z + C2) ez + C3e-z + e-z / 4, where z = logx

 

Probability and complex function: Unit V: Ordinary Differential Equations : Tag: : Problems with Answer | Ordinary Differential Equations - Exercise 5.3. (a) cauchy-euler


Related Topics



Related Subjects


Probability and complex function

MA3303 3rd Semester EEE Dept | 2021 Regulation | 3rd Semester EEE Dept 2021 Regulation